Monday, 21 April 2014

Flexible plastics turn mechanical vibrations into electrical energy

The shrinking dimensions and decreased power consumption of modern electronic gadgets have created opportunities for energy harvesting processes that tap into free, green energy from the environment. Vibration harvesters, for example, produce small amounts of electricity from everyday mechanical disturbances such as wind currents, traffic noise or footsteps.





Now, Kui Yao and co-workers from the A STAR Institute of Materials Research and Engineering in Singapore have discovered a way to give lightweight polymer vibration harvesters a hundredfold boost in energy output —a finding that may help to eliminate manual battery recharging in microsensors and mobile devices.

Many vibration harvesters contain piezoelectric substances that create an electric voltage when mechanically bent. By fabricating piezoelectric materials into cantilevers that resemble a diving board, these devices can oscillate from ambient vibrations and generate electricity. Researchers often use piezoelectric ceramics because they impart large amounts of electrical charges; however, the brittleness of ceramics makes them unsuitable for prolonged and large vibrational movements.

Yao and co-workers investigated a plastic-based piezoelectric material , polyvinylidene fluoride (PVDF), which is low cost and readily undergoes mechanical strain. To make efficient vibration harvesters from PVDF, researchers must stack the polymer in multiple layers, improving the output current and reducing the electrical impedance that is inherent to piezoelectric materials. But when too many thin piezoelectric layers are stacked, the cantilever can become too stiff for bending-mode vibrational harvesting.

To optimize piezoelectric harvesting with plastic films, the team deployed an analytical approach. Developing a mathematical model of a multilayered polymer cantilever coated with metal electrodes, the researchers systematically calculated how different material parameters affected the energy output.

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Followers

Popular Posts